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Abstract Black hole entropy appears to be “universal”—many independent calculations,
involving models with very different microscopic degrees of freedom, all yield the same
density of states. I discuss the proposal that this universality comes from the behavior of the
underlying symmetries of the classical theory. To impose the condition that a black hole be
present, we must partially break the classical symmetries of general relativity, and the re-
sulting Goldstone-boson-like degrees of freedom may account for the Bekenstein–Hawking
entropy. In particular, I demonstrate that the imposition of a “stretched horizon” constraint
modifies the algebra of symmetries at the horizon, allowing the use of standard conformal
field theory techniques to determine the asymptotic density of states. The results reproduce
the Bekenstein–Hawking entropy without any need for detailed assumptions about the mi-
croscopic theory.

1 Introduction

In the continuing quest for a quantum theory of gravity, black hole thermodynamics may be
the nearest thing we have to “experimental” data. Hawking radiation has not been directly
observed, of course. But the thermal properties of black holes have been derived in so many
independent ways [1–9], and are so robust against changes in the starting assumptions [10,
11], that it would seem perverse to devote too much time to a putative quantum theory of
gravity that could not reproduce the standard results.

Since the Bekenstein–Hawking entropy

S = A

4�G
(1.1)

depends on both Planck’s constant and Newton’s constant, it is inherently quantum gravi-
tational. We might therefore hope that black hole thermodynamics could give us important
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clues to the question of how to quantize general relativity. The fundamental problem is to
understand the underlying statistical mechanics. What microscopic states are responsible for
the Hawking temperature and Bekenstein–Hawking entropy?

Ten years ago, this question has an almost universally accepted answer: we don’t know.
There were some interesting ideas floating around, involving entanglement entropy [12] and
entropy of an “atmosphere” of external fields near the horizon [13], but we had nothing close
to a complete description.

Today, things are radically different: many people will tell you with great confidence
exactly what microscopic physics leads to black hole thermodynamics. The new problem
is that while many people “know” the answer, they do not all agree. Black hole entropy
may come from weakly coupled string and D-brane states [14, 15]; from nonsingular string
“fuzzballs” [16]; from holographic states in a dual conformal field theory that is in some
sense located at infinity [17]; from spin network states at the horizon [18] or perhaps inside
the horizon [19]; from “heavy” degrees of freedom in induced gravity [20]; or perhaps from
nonlocal topological properties of the black hole spacetime [21]. So far none of these pic-
tures offers us a comprehensive picture of black hole thermodynamics. But in its realm of
applicability, each can be used to count states for some black holes, and each seems to give
the correct entropy (1.1).

In a field in which we do not yet know the answers, the existence of competing models
may be seen as a sign of health. But the existence of competing models that all agree cries
out for a deeper explanation.

2 Conformal Symmetry and State-Counting

While there may be others, I know of only one general approach that might explain this
universality: perhaps some underlying feature of classical general relativity constrains the
structure of any good quantum theory of gravity. The natural candidate for such a feature
is a symmetry. This may at first seem unlikely—entropy is determined by the density of
states, an inherently quantum mechanical characteristic, and it is not at all obvious that a
classical symmetry can provide a strong enough constraint on the quantum theory. In one
case, though, a known classical symmetry does just what we need.

Start with a two-dimensional conformal field theory, that is, a theory invariant under
diffeomorphisms and Weyl transformations, and choose complex coordinates z and z̄. The
fundamental symmetries of such a theory are holomorphic and antiholomorphic diffeomor-
phisms, which are canonically generated by “Virasoro generators” L[ξ ] and L̄[ξ̄ ] [22]. Such
a theory has two conserved charges, L0 = L[ξ0] and L̄0 = L̄[ξ̄0], which can be thought of
as “energies” with respect to constant holomorphic and antiholomorphic transformations, or
equivalently as linear combinations of energy and angular momentum.

As generators of diffeomorphisms, the Virasoro generators have an algebra that is almost
unique [23]:

{L[ξ ],L[η]} = L[ηξ ′ − ξη′] + c

48π

∫
dz(η′ξ ′′ − ξ ′η′′),

{L[ξ ], L̄[η̄]} = 0, (2.1)

{L̄[ξ̄ ], L̄[η̄]} = L̄[η̄ξ̄ ′ − ξ̄ η̄′] + c̄

48π

∫
dz̄(η̄′ξ̄ ′′ − ξ̄ ′η̄′′).
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The central charges (also known as “conformal anomalies”) c and c̄ determine the unique
central extension of the ordinary algebra of diffeomorphisms. These constants can occur
classically, coming, for instance, from boundary terms [24], and even if they are absent in
the classical theory, they will typically appear upon quantization.

Consider now a conformal field theory for which the lowest eigenvalues of L0 and L̄0

are nonnegative numbers Δ0 and Δ̄0. Cardy has shown [25, 26] that for large eigenvalues Δ

and Δ̄ of L0 and L̄0, the density of states ρ(Δ, Δ̄) takes the remarkably simple form

lnρ(Δ, Δ̄) ∼ 2π

{√
ceffΔ

6
+

√
c̄effΔ̄

6

}
, with ceff = c − 24Δ0, c̄eff = c̄ − 24Δ̄0. (2.2)

The entropy is thus determined by the symmetry, independent of any other details. In par-
ticular, two conformal field theories with very different field content will have the same
asymptotic density of states, provided that their effective central charges are equal.

The Cardy formula (2.2) is relatively straightforward to prove—see, for example, [27]—
but I do not know of a fundamental physical explanation for this result. Partial insight may
be obtained, though, by noting that a central charge reflects a breaking of the conformal
symmetry. As we know from field theory [28], a broken symmetry can lead to new “Gold-
stone” degrees of freedom.1 Here, for example, one would normally require that physical
states be annihilated by the generators L[ξ ] and L̄[ξ̄ ] of gauge symmetries,

L[ξ ]|phys〉 = L̄[ξ̄ ]|phys〉 = 0. (2.3)

But if c �= 0, these conditions are incompatible with the brackets (2.1), and must be relaxed,
for instance by requiring that only the positive frequency components of L[ξ ] annihilate
physical states. We thus obtain new physical states—“would-be gauge states” [30] that be-
come physical because of the broken symmetry—that may contribute to ρ(Δ, Δ̄).

3 Near-Horizon is Near-Conformal

General relativity is not a conformal field theory, and it is most certainly not two-
dimensional. It is therefore not obvious that the Cardy formula should have any particular
relevance to black hole entropy. But there are good reasons to believe that black hole dy-
namics may be effectively described by a two-dimensional conformal field theory near the
horizon.

For instance, it is known that near a horizon, matter can be described by a two-
dimensional conformal field theory, with fields depending only on t and the “tortoise co-
ordinate” r∗ [31–33]. Indeed, the near-horizon metric in such coordinates becomes, in any
dimension,

ds2 = N2(dt2 − dr2
∗ ) + ds2

⊥, (3.1)

where the lapse function N goes to zero at the horizon. The Klein–Gordon equation then
reduces to

(� − m2)ϕ = 1

N2
(∂2

t − ∂2
r∗)ϕ +O(1) = 0. (3.2)

1The analogy with the Goldstone mechanism was suggested to me by Kaloper and Terning [29].
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The mass and transverse excitations become negligible near the horizon: they are essen-
tially red-shifted away relative to excitations in the r∗–t plane, leaving an effective two-
dimensional conformal field theory at each point of the horizon. A similar dimensional re-
duction occurs for the Dirac equation.

Jacobson and Kang have observed that the surface gravity and temperature of a stationary
black hole are conformally invariant as well [34]. And perhaps of most interest for the issues
at hand, Medved et al. have shown that a generic stationary black hole metric always has an
approximate conformal Killing vector near the horizon [35, 36].

4 The BTZ Black Hole

The first solid evidence that the Cardy formula might be used to determine black hole ther-
modynamics came from the (2 + 1)-dimensional black hole of Bañados, Teitelboim, and
Zanelli [37–40]. The BTZ black hole is the (2 + 1)-dimensional analog of the Kerr–AdS
geometry, with a metric of the form

ds2 = N2dt2 − N−2dr2 − r2(dφ + Nφdt)2

with N =
(

−8GM + r2


2
+ 16G2J 2

r2

)1/2

, Nφ = −4GJ

r2
, (4.1)

where the cosmological constant is Λ = −1/
2 and M and J are the anti-de Sitter analogs
of ADM mass and angular momentum. Like all vacuum spacetimes in 2 + 1 dimensions
[41], the BTZ metric has constant curvature, and can in fact be expressed as a quotient of
anti-de Sitter space by a discrete group of isometries. Nevertheless, it is a genuine black
hole:

• It has an event horizon at r = r+ and an inner Cauchy horizon at r = r−, where

r2
± = 4GM
2

{
1 ±

[
1 −

(
J

M


)2]1/2}
; (4.2)

• its Carter–Penrose diagram is identical to that of an ordinary Kerr–AdS black hole;
• it occurs as the end point of gravitational collapse of matter;
• most important for us, it exhibits standard black hole thermodynamics, with an en-

tropy (1.1), where the two-dimensional “area” is the horizon circumference.

Despite its apparent simplicity, though, the thermodynamics of the BTZ black hole
presents us with a conundrum. General relativity in 2+1 dimensions has no local degrees of
freedom [41]: up to a finite number of global degrees of freedom, the metric is completely
determined by the constraints. There seems to be no room for enough states to account for
what can be an arbitrarily large entropy.

One piece of the answer was discovered independently in 1997 by Strominger [42] and
Birmingham, Sachs, and Sen [43]. Note first that the conformal boundary of any (2 + 1)-
dimensional asymptotically anti-de Sitter spacetime is a flat cylinder. It is thus unsurprising
that the asymptotic symmetries of the BTZ black hole are described by a Virasoro alge-
bra (2.1). It is a bit more surprising that this algebra has a central extension. But as Brown
and Henneaux showed in 1986 [24]—and many authors have subsequently confirmed [40]—
a classical central charge is in fact present, appearing because of the need to add boundary
terms to the constraints, and taking the value

c = 3


2�G
. (4.3)
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Furthermore, the two conserved charges L0 and L̄0 can be computed by standard ADM
methods, yielding

Δ0 ∼ 1

16�G

(r+ + r−)2, Δ̄0 ∼ 1

16�G

(r+ − r−)2. (4.4)

Inserting (4.3–4.4) into the Cardy formula, we find

S ∼ 2π

8�G
(r+ + r−) + 2π

8�G
(r+ − r−) = 2πr+

4�G
, (4.5)

the correct Bekenstein–Hawking entropy. We thus learn that the BTZ entropy is related to
symmetries and boundary conditions at infinity.

A second piece of the answer starts from the observation [44, 45] that (2+1)-dimensional
gravity with a negative cosmological constant can be written as an SO(2,1) × SO(2,1)

Chern–Simons theory. The Chern–Simons action is gauge invariant on a compact manifold.
But boundaries and boundary conditions can break that invariance, in much the way I dis-
cussed in Sect. 2. The resulting Goldstone-like modes are described by a two-dimensional
conformal field theory at infinity: a Wess–Zumino–Witten model [46–48], or, in the case of
(2 + 1)-dimensional gravity, a Liouville theory with central charge (4.3) [49].

This result has now been confirmed by many different approaches, ranging from Chern–
Simons methods to the AdS/CFT correspondence; see [40] for a review. Of particular inter-
est is the explicit derivation of the Liouville field as a “would-be diffeomorphism” that be-
comes dynamical because of the need to impose boundary conditions [50, 51]. This appears
to resolves our earlier paradox: although (2 + 1)-dimensional gravity on a compact mani-
fold has only a small number of topological degrees of freedom, the presence of a boundary
partially breaks the diffeomorphism invariance, promoting “gauge” degrees of freedom to
physical excitations.

Whether these Liouville degrees of freedom can account for the entropy (4.5) remains
an open question [40]. A naive application of the Cardy formula certainly yields the cor-
rect entropy. The relatively well-understood “normalizable” sector of Liouville theory has a
nonzero minimum eigenvalue Δ0 of L0, however, lowering the effective central charge ceff

in (2.1) and ruining the correspondence [52, 53]. Chen has recently shown that the more
poorly understood “nonnormalizable” sector of the theory may admit a sensible quantiza-
tion, though, with states that can be explicitly counted and that seem to reproduce the correct
entropy [54].

5 Horizons and Constraints

The real world, of course, is not 2+1 dimensional, and the derivation of the BTZ black hole
entropy does not easily generalize. Only in 2 + 1 dimensions is the asymptotic boundary of
spacetime two dimensional, allowing a direct application of the Cardy formula. Moreover, it
seems more natural to associate black hole states with the horizon rather than spatial infinity.
For a single black hole in 2 + 1 dimensions, the distinction may be unimportant, since there
are no additional dynamical degrees of freedom lying between the horizon and infinity. In
3+1 dimensions, though, the prospect of extracting the degrees of freedom of a single black
hole from the asymptotics of a complicated spacetime is daunting.

We can, however, draw a few lessons from 2+1 dimensions. We should look for “broken
gauge invariance” from boundary conditions, and hope for an effective two-dimensional
picture. But we should also start by looking near the horizon rather than at infinity.
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There is an immediate objection to this proposal: unlike spatial infinity, the horizon
of a black hole is not a true boundary. To clarify this issue, we must take a step back
and ask what it means to ask a question about a black hole in a quantum theory of grav-
ity.

In the usual semiclassical treatments of black hole thermodynamics, the answer to this
question is obvious: we simply fix a black hole background, and look at quantum fields
in that background. In a full quantum theory of gravity, though, we are not allowed to do
this. Such a theory has no fixed background; the metric is an operator, and the uncertainty
principle tells us that its value cannot be exactly specified. At best, we can restrict a piece of
the geometry and ask conditional questions: “If geometric features that characterize a black
hole of type X are present, what is the probability of observing phenomenon Y?”

I know of two ways to obtain such a conditional probability. The first, discussed in [30],
is to treat the horizon as a “boundary” at which suitable boundary conditions are imposed.
In the sum over histories formalism, for example, we can divide spacetime into two regions
along a hypersurface H and perform separate path integrals over fields on each side, with
fields restricted at the “boundary” by the requirement that H be a horizon. Such split path
integral has been studied in detail in 2 + 1 dimensions [55], where it leads to the same
WZW model that was discussed in the preceding section. Although the horizon is not a
true boundary, it is, in this approach, a hypersurface upon which we impose “boundary
conditions”, and this turns out to be good enough.

Alternatively, we can impose “horizon constraints” directly, either classically or in the
quantum theory. We might, for example, construct an operator ϑ representing the expansion
of a particular null surface, and restrict ourselves to states annihilated by ϑ . As we shall see
below, such a restriction can affect the algebra of diffeomorphisms, allowing us to exploit
the Cardy formula to count states.

The “horizon as a boundary” approach has been widely investigated; see, for instance,
[56–65]. One naturally finds a conformal symmetry in the r∗–t plane, and one can obtain
a Virasoro algebra with a central charge that leads to the correct black hole entropy. On
the other hand, the diffeomorphisms whose algebra yields that central charge—essentially
those that leave the lapse function invariant—are generated by vector fields that blow up
at the horizon [66–69], and it is not clear whether this is permissible. Nor is the angular
dependence of these vector fields well understood. A related approach looks for approximate
conformal symmetry near the horizon [70–73]; again, one finds a Virasoro algebra with a
central charge that seems to lead to the correct entropy.

The alternative “horizon constraint” approach is still in the early stages of development.
Suppose we wish to constrain our theory of gravity by requiring that some prescribed surface
H be an “isolated horizon” [74] or a “dynamical horizon” [75]. Such constraints restrict
the allowed data on H, and in principle we should be able to use the tools of constrained
Hamiltonian dynamics [76–78] to study such conditions. Unfortunately, though, an isolated
horizon is by definition a null surface, while standard techniques deal with constraints on
spacelike surfaces. While some work on “constrained light cone quantization” exists, this is
a difficult program.

As a simpler warm-up exercise, we can impose constraints requiring the presence of a
spacelike “stretched horizon” that becomes nearly null, as illustrated in Fig. 1. As I will dis-
cuss below, such a stretched horizon constraint leads to a Virasoro algebra with a calculable
central charge, and at least in the case of two-dimensional dilaton gravity, yields the correct
Bekenstein–Hawking entropy.
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Fig. 1 A spacelike “stretched
horizon” H

6 Horizon Constraints and the Dilaton Black Hole

I now turn to a slightly more technical analysis of a particular case, the two-dimensional
dilaton black hole. Details can be found in [79, 80]. Our world is surely not two dimensional,
so this may again seem too great a specialization. As argued above, though, we expect the
near-horizon dynamics of an arbitrary black hole to be effectively two dimensional, so a
dimensionally reduced model is not such a bad starting point.

Two-dimensional dilaton gravity [81, 82] can be described, after a rescaling of the metric,
by an action

I =
∫

d2x
√−g[AR + V (A)], (6.1)

where R is the two-dimensional scalar curvature and A is a scalar field, the dilaton (often
denoted as ϕ). V (A) is a potential whose form depends on the higher-dimensional theory
we started with; we will not need an exact expression. As the notation suggests, A is the
transverse area in the higher-dimensional theory, in units 16πG = 1. The analog of the
expansion—the fractional rate of change of area along a null curve with null normal la—is

ϑ = la∇aA/A. (6.2)

It is useful to rewrite the action (6.1) in terms of a null dyad (la, na) with l2 = n2 = 0,
l · n = −1. These determine “surface gravities” κ and κ̄ , defined by the conditions

∇alb = −κnalb − κ̄ lalb, ∇anb = κnanb + κ̄ lanb, (6.3)

and the action becomes

I =
∫

d2x[ε̂ab (2κnb∂aA − 2κ̄lb∂aA) + √−gV ]. (6.4)

If we now express the components of our dyad with respect to coordinates (u, v) as

l = σdu + αdv, n = βdu + τdv, (6.5)

it is easy to find the Hamiltonian form of the action [79]. The system has three first-class
constraints; denoting a derivative with respect to v by a prime, they are
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C⊥ = πα
′ − 1

2
παπA − τV (A),

C‖ = πAA′ − απα
′ − τπτ

′, (6.6)

Cπ = τπτ − απα + 2A′.

C⊥ and C‖ generate the diffeomorphisms orthogonal to and parallel to a spacelike slice
u = const., while Cπ generates local Lorentz transformations.

We can now impose “stretched horizon” constraints at the surface u = 0. We first demand
that H be “almost null”, i.e., that its normal be nearly equal to the null vector la . By (6.5),
this requires that α = ε1 � 1.

We must next demand that H be “almost nonexpanding”. This is a bit more subtle, since
the absolute scale of la is not fixed; while the requirement that the expansion be exactly
zero is independent of such a scale, the requirement of a “small” expansion is not. One
solution is to note that the surface gravity κ depends on this scale as well, and that the
ratio ϑ/κA is independent of at least constant rescalings of la . We therefore require that
lv∇vA/κA = ε2 � 1. Expressing these conditions in terms of canonical variables, we obtain
two “stretched horizon” constraints:

K1 = α − ε1 = 0,

(6.7)

K2 = A′ − 1

2
ε2A+πA + a

2
Cπ = 0,

where a is an arbitrary constant and A+ is the horizon value of the dilaton. By looking at a
generic exact black hole solution, one can verify that these constraints do, in fact, determine
a spacelike stretched horizon that looks like that of Fig. 1, which very rapidly becomes very
nearly null.

K1 and K2 are not quite “constraints” in the usual sense of constrained Hamiltonian dy-
namics, but they are similar enough that many existing techniques can be used. In particular,
observe that the Ki have nontrivial brackets with the momentum and boost generators C‖
and Cπ , so these no longer generate invariances of the constrained theory. But we can fix this
by a method suggested years ago by Bergmann and Komar [78]: we define new generators

C‖ → C∗
‖ = C‖ + a1K1 + a2K2,

(6.8)
Cπ → C∗

π = Cπ + b1K1 + b2K2

with coefficients ai and bi chosen so that {C∗,Ki} = 0. Since Ki = 0 on admissible geome-
tries, the generators C∗ are physically equivalent to the original C; but they now preserve
the horizon constraints as well.

We now make the crucial observation that the redefinitions (6.8) affect the Poisson brack-
ets of the constraints. With the choice a = −2 in (6.7), it may be shown that

{C∗
‖ [ξ ],C∗

‖ [η]} = −C∗
‖ [ξη′ − ηξ ′] + 1

2
ε2A+

∫
dv(ξ ′η′′ − η′ξ ′′),

{C∗
‖ [ξ ],C∗

π [η]} = −C∗
π [ξη′], (6.9)

{C∗
π [ξ ],C∗

π [η]} = −1

2
ε2A+

∫
dv(ξη′ − ηξ ′).
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This algebra has a simple conformal field theoretical interpretation [22]: the C∗
‖ generate a

Virasoro algebra with central charge

c

48π
= −1

2
ε2A+, (6.10)

while C∗
π is a primary field of weight one. Different choices of the parameter a in (6.7) yield

equivalent algebras, although with slightly redefined generators.
The Cardy formula (2.2) requires both the central charge and the conserved charge Δ.

As in the usual approaches to black hole mechanics, the latter comes from a boundary term
needed to make the generator C∗

‖ “differentiable” [83]. It was shown in [79] that this term is

C∗
‖bdry[ξ ] = −ξπAA|v=v+ , (6.11)

which will give a nonvanishing classical contribution to Δ.
Finally, we also need a mode expansion to define the Fourier component L0, or, equiva-

lently, a normalization for the “constant translation” ξ0. For a conformal field theory defined
on a circle, or on a full complex plane with a natural complex coordinate, this normalization
is essentially unique. Here, though, it is not so obvious how to choose the “right” complex
coordinate. As argued in [71], however, there is one particularly natural choice,

z = e2πiA/A+ , ξn = A+
2πA′ z

n, (6.12)

where the prefactor is fixed by demanding that [ξm, ξn] = i(n − m)ξm+n.
Equation (6.11) then implies that

Δ = C∗
‖bdry[ξ0] = − A+

2πA′ πAA+ = − A+
πε2

. (6.13)

Inserting (6.10) and (6.13) into the Cardy formula, assuming that Δ0 is small, and restoring
the factors of 16πG and �, we obtain an entropy

S = 2π

16πG

√(
−24πε2A+

6�

)(
− A+

πε2�

)
= A+

4�G
, (6.14)

exactly reproducing the standard Bekenstein–Hawking entropy (1.1).

7 Open Questions

While these results are intriguing, they are certainly not yet conclusive. I know of several
straightforward steps that may take us further:

1. We should determine how sensitive the result is to the exact definition (6.7) of the
stretched horizon H. As a first step, a similar computation has now been carried out in
radially quantized Euclidean quantum gravity [84]. Here, the constraints have a simpler
geometric interpretation—they essentially fix the proper distance of the initial surface
from the origin—and it may be possible to relate the constraint analysis to the path in-
tegral methods of [85]. Ideally, the analysis should also be repeated in a true light cone
quantization; work on this is in progress.
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2. We should extend the analysis beyond two dimensions. This is probably not too hard
conceptually, though the technical details may be complicated.

3. We should try to relate the horizon constraint approach of Sect. 6 to the “horizon as
boundary” methods described in Sect. 5. A comparison with the near-horizon symmetry
approaches of [70, 71] should be fairly simple: the central charge (6.10) agrees with that
of [71], and can be made to match that of [70] by a choice of the parameter q in that
paper. The relation to other boundary approaches may be more subtle, though it is worth
noting that the central charge (6.10) agrees with that of [56] with the interesting choice
T = ϑ for the periodicity of the modes in that paper.

Three other questions are more difficult, but perhaps more profound. First, observe that
the vector fields (6.12) blow up at the horizon, where A′ → 0. A similar phenomenon oc-
cur in the “horizon as boundary” approach, as noted in [66, 68]. This divergence seems to
be closely related to the use of Schwarzschild-like coordinates, which characterize an ob-
server who stays outside of the black hole. Note that such coordinates were needed for the
conformal behavior described in Sect. 3. Similarly, an exact horizon constraint has recently
been analyzed in two-dimensional dilaton gravity, with diffeomorphisms that are implicitly
required to be well-behaved at the horizon [86]; for such diffeomorphisms, the central ex-
tension of the Virasoro algebra seems to disappear. If this proves to be a general feature of
conformal methods, it may be telling us something profound about “black hole complemen-
tarity” [87]: perhaps the Bekenstein–Hawking entropy is only well-defined for an observer
who remains outside the horizon.

Second, if the horizon symmetry described here provides a universal explanation of black
hole entropy, then the symmetry should be identifiable in other approaches to black hole
microphysics. There is a reasonable chance that this connection can be made for a large
class of “stringy” black holes. Many of the higher dimensional black holes whose entropy
can be computed in string theory have near-horizon geometries that look like that of the
BTZ black hole [88], allowing thermodynamic properties to be computed by the methods
of Sect. 4. If the Virasoro algebra of the BTZ black hole at infinity can be related to our
near-horizon algebra, it may be possible to demonstrate the role of horizon constraints in
these string theoretical black holes. A similar interpretation may be possible for induced
quantum gravity, where a conformal field theory description is also possible [89]. Whether
a corresponding result exists for loop quantum gravity is an open question.

Third, there is much more to black hole thermodynamics than the Bekenstein–Hawking
entropy. If the ideas described here are correct, the Goldstone-like “would-be diffeomor-
phism” degrees of freedom must couple properly to external fields to produce Hawking
radiation. In 2 + 1 dimensions, there has been one computation of this sort [90], in which
the coupling of a classical source to the boundary degrees of freedom was shown to yield the
correct Hawking radiation. A recent discussion of Hawking radiation in terms of diffeomor-
phism anomalies at the horizon [91] may also be relevant, and it may be possible to obtain
some information by imposing horizon constraints in a Lagrangian formalism [92]. But the
investigation of this issue has barely begun.
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